Energy Efficient Multi-Core Processing
نویسندگان
چکیده
This paper evaluates the present state of the art of energy-efficient embedded processor design techniques and demonstrates, how small, variable-architecture embedded processors may exploit a run-time minimal architectural synthesis technique to achieve greater energy and area efficiency whilst maintaining performance. The picoMIPS architecture is presented, inspired by the MIPS, as an example of a minimal and energy efficient processor. The picoMIPS is a variablearchitecture RISC microprocessor with an application-specific minimised instruction set. Each implementation will contain only the necessary datapath elements in order to maximise area efficiency. Due to the relationship between logic gate count and power consumption, energy efficiency is also maximised in the processor therefore the system is designed to perform a specific task in the most efficient processor-based form. The principles of the picoMIPS processor are illustrated with an example of the discrete cosine transform (DCT) and inverse DCT (IDCT) algorithms implemented in a multi-core context to demonstrate the concept of minimal architecture synthesis and how it can be used to produce an application specific, energy efficient processor.
منابع مشابه
Efficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems
Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...
متن کاملAn attention controlled multi-core architecture for energy efficient object recognition
In this paper, an attention controlled multi-core architecture is proposed for energy efficient object recognition. The proposed architecture employs two IP layers having different roles for energy efficient recognition processing: the attention/control IPs compute regions-of-interest (ROIs) of the entire image and control the multiple processing cores to perform local object recognition proces...
متن کاملEnergy-Efficient Sorting on a Many-Core Platform
As processors move from multi-core to many-core architectures, opportunities arise for energy-efficient enterprise computations, such as sorting, on large arrays of processors. This paper proposes three different energy-efficient sorting methods for the first phase of an external sort simulated on a varying sized fine-grained many-core processor arrays used as a co-processor to an Intel CPU, wh...
متن کاملA Study of the Optimistic Mapreduce Techniques for Energy Minimization and Performance Enhancement for Multicore Cloud Computing Applications
Multi-core architecture is established on a number of processors and has local caches (memories). When all the mandatory actions of a computer are executed on a processor which has more than one core to execute, its processor is known as multi core architecture. Multi-core processing is used to make tasks energy efficient, augment their performance and to make multiple tasks run concurrently in...
متن کاملDesign of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems
Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...
متن کاملAn Asymmetry-aware Energy-efficient Hypervisor Scheduling Policy for Asymmetric Multi-core
Recently, asymmetric multi-core architecture have become an important issue in CPU design, software scheduling, and virtualization. In a virtualization environment, a hypervisor scheduler assigns virtual cores to physical cores for task execution. However, a load-balancing scheduling strategy for a symmetric multi-core platform (SMP) is unaware of core asymmetry. The deployment of such a strate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014